华体会体育(中国)hth·官方网站

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

ASD | 基于GF-5号高光谱卫星影像反演露天煤矿区土壤重金属浓度

日期: 2022-05-12
浏览次数: 176

ASD | 基于GF-5号高光谱卫星影像反演露天煤矿区土壤重金属浓度

随着人类社会工农业现代化、城市化的发展,人为因素造成土壤重金属污染是当今世界越来越不容忽视的环境问题。尽管煤矿资源的开发对社会经济至关重要,但其对自然环境产生的不利影响也是不可避免的。因此,我们有必要调查露天煤矿的土壤重金属分布,以发现受污染的农田,提供和制定土地复垦策略以及进一步的公共健康策略。


原位土壤采样与实验室化学分析方法(利用高精度的原子吸收光谱法(AAS)和电感耦合等离子体质谱法(ICP-MS))相结合,已广泛应用于土壤重金属浓度的调查和制图。然而,该方法难以获得连续的土壤重金属浓度制图、耗时费力、成本高、效率低,适用范围小,且可能会再次对环境产生不利影响。遥感技术的发展为快速、高效、大尺度监测重金属含量提供了新的视角。而部分所使用的高光谱传感器存在数据质量差、图像连续性受限、光谱范围窄、空间分辨率低、需要辅助环境变量、易受大气干扰等问题。与现有高光谱卫星传感器相比,GF-5 AHSI高光谱成像仪的空间分辨率、光谱分辨率、光谱范围、时间分辨率等明显增强。然而,关于使用GF-5 AHSI高光谱影像反演土壤重金属含量的相关研究报道较少。

基于此,在本研究中,来自西安科技大学的张波(第一作者)、郭斌(通讯作者)课题组联合其它研究团队针对高分5号高光谱卫星影像反演中国北部某露天煤矿区(图1)土壤重金属含量问题进行了研究。旨在(1)利用直接校正(DS)算法在实验室测量的和GF-5 AHSI获得的土壤光谱之间建立传输模型,以提高土壤重金属浓度估算精度,以及(2)通过比较随机森林(RF)、极限学习机(ELM)、支持向量机(SVM)和反向传播神经网络(BPNN)算法确定最佳估算模型,基于该模型绘制土壤重金属浓度图。

ASD | 基于GF-5号高光谱卫星影像反演露天煤矿区土壤重金属浓度

图1 研究区地理位置及原位土壤样品分布。(a),(b)和(c)代表研究区野外状况。


作者于2020年2月收集了20 cm深度的土壤样品,在实验室中测量了其重金属含量,并利用ASD FieldSpec 4地物光谱仪测量了土壤光谱数据。于2020年3月19日获取GF-5 AHSI高光谱卫星影像,基于实验室土壤光谱,引入直接校正算法(Direct standardization,DS)校正GF-5号高光谱卫星影像。利用连续小波变换(CWT)和Boruta算法进行光谱预处理以及特征波段提取。利用RF,ELM,SVM和BPNN4种机器学习方法估算土壤重金属浓度,通过决定系数(R2)、均方根误差(RMSE)和平均绝对误差(MAE)比较了模型反演精度,确定了最佳模型。最后绘制了露天煤矿区土壤重金属锌、镍和铜含量空间分布特征图。

ASD | 基于GF-5号高光谱卫星影像反演露天煤矿区土壤重金属浓度

图2 本研究流程图。


【结果】


ASD | 基于GF-5号高光谱卫星影像反演露天煤矿区土壤重金属浓度

图3 110个土壤样品的光谱反射率曲线及评估DS算法对从GF-5 AHSI影像提取的光谱的校正。(a)ASD测量的实验室光谱,(b)从GF-5 AHSI影像中提取的光谱,(c)基于实验室光谱通过DS算法校正的光谱,以及(d)用于评估DS算法的光谱角映射器(θ)。


ASD | 基于GF-5号高光谱卫星影像反演露天煤矿区土壤重金属浓度

图4 在每个CWT分解尺度评估估算模型的精度。


ASD | 基于GF-5号高光谱卫星影像反演露天煤矿区土壤重金属浓度

图5 Zn,Ni和Cu浓度最佳估算模型散点图。


ASD | 基于GF-5号高光谱卫星影像反演露天煤矿区土壤重金属浓度

图6 研究区重金属空间分布图。


【结论】

(1)连续小波变换(CWT)可以有效降低GF-5号高光谱卫星影像噪音,Boruta算法可有效提取特征波段。Boruta算法消除了冗余高光谱数据,并有效保留了高光谱数据的完整性和原始波段的物理意义。DS算法可以可靠的校正GF-5 AHSI图像以估算重金属浓度。利用DS算法可显著提高模型反演精度。对于Zn,Ni和Cu,Rv2分别为0.77(RF),0.62(RF)和0.56(ELM)。

(2)重金属分布趋势与地面实测结果基本一致。

(3)露天煤矿活动可能是矿区土壤重金属污染的主要来源,而车辆排放、粉尘、废水和垃圾处理可能是研究区重金属污染的其它可能原因。

本文揭示了GF-5号高光谱卫星影像可以成为绘制土壤重金属图的可靠数据源。本研究提出的工作流程和方法可以为连续尺度上土壤重金属浓度估算提供科学依据。


请点击下方链接,阅读原文:

https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650310465&idx=3&sn=1ac043928cce70452bbe82f40fa265ae&chksm=bee1abbe899622a87f8eeda72e8e3bf30bbda31f0f4bb25cae95fbcbe19ff94bb67c13898f35&token=757282755〈=zh_CN#rd



News / 相关新闻 More
2025 - 08 - 20
每年,全球有超过 70亿只雄性雏鸡在孵化后被淘汰,仅因“性别不符”。这种传统做法在动物福利、资源浪费和伦理层面引发广泛关注。有没有可能——在鸡蛋孵化前,就知道性别?美国伊利诺伊大学研究团队近日在权威期刊《Food Control》发表成果,提出了一种基于高光谱成像与机器学习的非破坏性性别识别技术,成功在孵化前对鸡蛋进行精准“性别筛选”,为蛋禽行业带来颠覆性突破。实验方法简述本研究由美国伊利诺伊大学厄本那-香槟分校团队开展,实验在校内家禽科研平台进行。研究共采集了264枚白壳鸡蛋,鸡种为 White Leghorn,母鸡年龄约29周。所有鸡蛋在清洁、编号后,于12.8°C、相对湿度78%的条件下冷藏过夜,以保证实验一致性。次日,鸡蛋在室温下静置30分钟恢复温度后,使用Resonon Pika L 型高光谱成像仪进行图像采集。系统配置如下:光谱范围:374–1015nm光谱分辨率:2...
2025 - 08 - 18
研究背景:被忽视的“冬季脉冲”释放一氧化二氮(N2O)作为一种高效温室气体,其单位质量对全球变暖的影响是二氧化碳的近300倍。特别是在寒冷草原地区,每年春季的“冻融期”会爆发剧烈的N2O“热时刻”,而这些短暂却强烈的排放事件,往往被全球温室气体模型忽略。研究目标:揭秘雪下土壤N2O的爆发机制中国科学院植物研究所的研究团队,首次结合“原位高频自动通量监测”与“区域土壤柱模拟实验”,系统揭示了加深的冬季积雪如何显著放大草地土壤N2O排放,并进一步明确了水分与微生物联动机制在这一过程中的核心作用。图1. 研究区概况实验一:原位自动监测,捕捉全年N2O变化趋势地点:内蒙古草原生态系统研究站(IMGERS)方法:在天然草地中布设雪围栏制造“深雪处理”,并使用SF-3500系列多通道土壤气体通量测量系统(华体会体育(中国)hth·官方网站),配合高精度激光光腔分析仪,实现全年不间断、每日高频率N2O通量监测。亮...
2025 - 08 - 11
在中国海沿岸的红树林中,有一种名叫桐花树 (Aegiceras corniculatum) 的植物,静静地记录着环境的蛛丝马迹。近日,广东海洋大学与中科院广州地化所、加州理工学院等单位合作,结合叶蜡正构烷烃和脂肪酸的δ2H分析及环境参数监测,首次构建了盐度-代谢调控-同位素分馏的关联模型,不仅修正了红树林同位素分馏理论模型,还为重建热带沿海古环境提供了全新视角。图1.研究区概况· 研究地点:湛江红树林国家级自然保护区植物叶片中的蜡质化合物,能“记住”它们吸收水分的氢同位素特征(δ²H),而这一特征受降水、盐度等因素影响。团队选取了湛江高桥、九洲与营仔三条河口,分别在旱季(2021年11月)与雨季(2022年6月),采集了桐花树的叶片、木质部、叶水、水体和沉积物孔隙水等样品,系统分析了不同季节和盐度梯度下的氢氧同位素变化。在本研究中,科研人员采用LI-2100 全自动真空...
2025 - 08 - 11
在应对气候变化的全球行动中,“土壤碳汇”这一关键词越来越频繁地出现在科学家们的研究中。在全球气候治理日益紧迫的今天,如何提升土壤碳汇能力,成为科学界关注的热点。近日,一项发表在国际期刊《Land Degradation & Development》的最新研究,聚焦非洲萨赫勒地区,通过实地采样与建模分析,揭示了不同放牧强度对草原土壤有机碳储量的影响机制。 图1. 研究区域和实验地点的位置。 研究背景 非洲萨赫勒地区是全球典型的半干旱草原生态系统,牧业在当地生计中占据重要地位。然而,关于放牧对土壤碳储量的具体影响,尤其是在不同强度下的机制,一直缺乏系统的实地数据。研究方法§采用多点样方布设,覆盖不同放牧压力区域§采集0–30cm深度的土壤进行碳氮分析§结合ASDLabSpec4地物光谱仪进行快速土壤属性预测§使用结构方程模型(SEM)解析变量间直...
关闭窗口】【打印
Copyright ©2018-2023 华体会体育(中国)hth·官方网站
犀牛云提供企业云服务

华体会体育(中国)hth·官方网站

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 



 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开