华体会体育(中国)hth·官方网站

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

土壤呼吸 | 冬季增雪促进冻融期N2O排放机制

日期: 2025-08-18
浏览次数: 6

土壤呼吸 | 冬季增雪促进冻融期N2O排放机制

土壤呼吸 | 冬季增雪促进冻融期N2O排放机制

研究背景:被忽视的“冬季脉冲”释放

一氧化二氮(N2O)作为一种高效温室气体,其单位质量对全球变暖的影响是二氧化碳的近300倍。特别是在寒冷草原地区,每年春季的“冻融期”会爆发剧烈的N2O“热时刻”,而这些短暂却强烈的排放事件,往往被全球温室气体模型忽略。

研究目标:揭秘雪下土壤N2O的爆发机制

中国科学院植物研究所的研究团队,首次结合“原位高频自动通量监测”与“区域土壤柱模拟实验”,系统揭示了加深的冬季积雪如何显著放大草地土壤N2O排放,并进一步明确了水分与微生物联动机制在这一过程中的核心作用。

土壤呼吸 | 冬季增雪促进冻融期N2O排放机制

图1. 研究区概况

实验一:原位自动监测,捕捉全年N2O变化趋势

地点:内蒙古草原生态系统研究站(IMGERS)

方法:在天然草地中布设雪围栏制造“深雪处理”,并使用SF-3500系列多通道土壤气体通量测量系统(华体会体育(中国)hth·官方网站),配合高精度激光光腔分析仪,实现全年不间断、每日高频率N2O通量监测。

亮点数据:

深雪下冻融期内最大N2O通量高达252μgNm⁻² h⁻¹,是自然雪层的近9倍;

短短46天的冻融期贡献了全年的57%通量。

实验二:12地土壤柱,揭示区域差异与机制

区域:覆盖干旱、典型、湿润草甸草原,横跨1500公里

方法设计:

每个站点采集天然土壤柱,维持原始结构不扰动;

设置4种模拟雪深处理(0、8、16、28cm),以冰替代雪后融化再冻融,重建真实的土壤温度与水分变化;

用静态箱采气法共采集1920组数据,并配套土壤含水量、微生物碳氮、酶活性和基因丰度等指标分析。

 

结果

1.冬季增雪促进冻融期N2O排放

土壤呼吸 | 冬季增雪促进冻融期N2O排放机制

图2. 冻融期N2O排放通量

 

2. 调控冻融期N2O排放因素

土壤呼吸 | 冬季增雪促进冻融期N2O排放机制

图3. 气候、植物和土壤理化性质对生态区不同模拟雪深下冻融期N2O通量的影响

土壤呼吸 | 冬季增雪促进冻融期N2O排放机制

图4. 生物因素对冻融期N2O排放的影响

 

3.水分-微生物层级调控机制

土壤呼吸 | 冬季增雪促进冻融期N2O排放机制

图5. 生物与非生物因素的相对重要性

土壤呼吸 | 冬季增雪促进冻融期N2O排放机制 

图6. 水分-微生物对冻融期N2O排放的层级调控机制

 

4. 驱动不同生态区N2O排放热点的因素

土壤呼吸 | 冬季增雪促进冻融期N2O排放机制

图7. 不同生态区域充水孔隙度和微生物属性变化的控制因素

 


微生物机制揭秘

研究发现当土壤含水率(WFPS)处于43%~66%区间时,N2O排放受水分与微生物“联合作用”控制;

而当含水率超过66%时,N2O释放完全由微生物主导,尤其是与氮循环相关的酶活性和功能基因表达。

关键微生物因素

narG、napA基因(硝酸还原)和nosZ基因(N2O还原)丰度之比,精准预测排放强度;

酶动力学参数(Vmax)清晰反映出N元素在微生物系统中的处理速率。

科学启示:模型中不能忽略的“热时刻”

高雪深 + 高根系生物量 + 湿润气候 = 草地N2O排放“热点区”

研究揭示了N2O释放的“水分–微生物”分阶段控制模型,为改进气候模型提供新思路。

 

参考文献
Luo et al., 2025. Global Change Biology
标题:《Moisture–Microbial Interaction Amplifies N₂O Emission Hot Moments Under Deepened Snow in Grasslands》
DOI: 10.1111/gcb.70254


News / 相关新闻 More
2025 - 08 - 20
每年,全球有超过 70亿只雄性雏鸡在孵化后被淘汰,仅因“性别不符”。这种传统做法在动物福利、资源浪费和伦理层面引发广泛关注。有没有可能——在鸡蛋孵化前,就知道性别?美国伊利诺伊大学研究团队近日在权威期刊《Food Control》发表成果,提出了一种基于高光谱成像与机器学习的非破坏性性别识别技术,成功在孵化前对鸡蛋进行精准“性别筛选”,为蛋禽行业带来颠覆性突破。实验方法简述本研究由美国伊利诺伊大学厄本那-香槟分校团队开展,实验在校内家禽科研平台进行。研究共采集了264枚白壳鸡蛋,鸡种为 White Leghorn,母鸡年龄约29周。所有鸡蛋在清洁、编号后,于12.8°C、相对湿度78%的条件下冷藏过夜,以保证实验一致性。次日,鸡蛋在室温下静置30分钟恢复温度后,使用Resonon Pika L 型高光谱成像仪进行图像采集。系统配置如下:光谱范围:374–1015nm光谱分辨率:2...
2025 - 08 - 18
研究背景:被忽视的“冬季脉冲”释放一氧化二氮(N2O)作为一种高效温室气体,其单位质量对全球变暖的影响是二氧化碳的近300倍。特别是在寒冷草原地区,每年春季的“冻融期”会爆发剧烈的N2O“热时刻”,而这些短暂却强烈的排放事件,往往被全球温室气体模型忽略。研究目标:揭秘雪下土壤N2O的爆发机制中国科学院植物研究所的研究团队,首次结合“原位高频自动通量监测”与“区域土壤柱模拟实验”,系统揭示了加深的冬季积雪如何显著放大草地土壤N2O排放,并进一步明确了水分与微生物联动机制在这一过程中的核心作用。图1. 研究区概况实验一:原位自动监测,捕捉全年N2O变化趋势地点:内蒙古草原生态系统研究站(IMGERS)方法:在天然草地中布设雪围栏制造“深雪处理”,并使用SF-3500系列多通道土壤气体通量测量系统(华体会体育(中国)hth·官方网站),配合高精度激光光腔分析仪,实现全年不间断、每日高频率N2O通量监测。亮...
2025 - 08 - 11
在中国海沿岸的红树林中,有一种名叫桐花树 (Aegiceras corniculatum) 的植物,静静地记录着环境的蛛丝马迹。近日,广东海洋大学与中科院广州地化所、加州理工学院等单位合作,结合叶蜡正构烷烃和脂肪酸的δ2H分析及环境参数监测,首次构建了盐度-代谢调控-同位素分馏的关联模型,不仅修正了红树林同位素分馏理论模型,还为重建热带沿海古环境提供了全新视角。图1.研究区概况· 研究地点:湛江红树林国家级自然保护区植物叶片中的蜡质化合物,能“记住”它们吸收水分的氢同位素特征(δ²H),而这一特征受降水、盐度等因素影响。团队选取了湛江高桥、九洲与营仔三条河口,分别在旱季(2021年11月)与雨季(2022年6月),采集了桐花树的叶片、木质部、叶水、水体和沉积物孔隙水等样品,系统分析了不同季节和盐度梯度下的氢氧同位素变化。在本研究中,科研人员采用LI-2100 全自动真空...
2025 - 08 - 11
在应对气候变化的全球行动中,“土壤碳汇”这一关键词越来越频繁地出现在科学家们的研究中。在全球气候治理日益紧迫的今天,如何提升土壤碳汇能力,成为科学界关注的热点。近日,一项发表在国际期刊《Land Degradation & Development》的最新研究,聚焦非洲萨赫勒地区,通过实地采样与建模分析,揭示了不同放牧强度对草原土壤有机碳储量的影响机制。 图1. 研究区域和实验地点的位置。 研究背景 非洲萨赫勒地区是全球典型的半干旱草原生态系统,牧业在当地生计中占据重要地位。然而,关于放牧对土壤碳储量的具体影响,尤其是在不同强度下的机制,一直缺乏系统的实地数据。研究方法§采用多点样方布设,覆盖不同放牧压力区域§采集0–30cm深度的土壤进行碳氮分析§结合ASDLabSpec4地物光谱仪进行快速土壤属性预测§使用结构方程模型(SEM)解析变量间直...
关闭窗口】【打印
Copyright ©2018-2023 华体会体育(中国)hth·官方网站
犀牛云提供企业云服务

华体会体育(中国)hth·官方网站

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 



 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开