华体会体育(中国)hth·官方网站

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

日期: 2019-03-19
浏览次数: 286

M.K. Maid1*

, R.R. Deshmukh2

1*Department of CS and IT, Dr. B. A. M. U, Aurangabad, India

2Department of CS and IT, Dr. B. A. M. U, Aurangabad, India

*Corresponding Author: mm915monali@gmail.com 

Available online at: www.ijcseonline.org 


Abstract— Remote Sensing has wide range of applications in many different fields. Remote Sensing has been found to be a valuable tool in evaluation, monitoring, and management of land, water and crop resources. The applications of remote sensing techniques in the field of agriculture are wide and varied ranging from crop identification, detection of disease on different crops & predicting grain yield of crops. Many remote sensing applications are devoted to the agricultural sector. The selected applications are put in the context of the global challenges the agricultural sector is facing: minimizing the environmental impact, while increasing production and productivity. The application of remote sensing in agriculture typically involves measuring reflectance of electromagnetic radiation in the visible (390 to 770 nm), near-infrared (NIR, 770 to 1,300 nm), or middle-infrared (1,300 to 2,500 nm) ranges using spectrometers. This paper reviews the concept of hyperspectral remote sensing, use of remote sensing in terms of agriculture field, study of diseased wheat leaves using hyperspectral remote sensing.


Keywords—Remote Sensing, Wheat Leaf Rust, Vegetation Indices, ASD Fieldspec4 Spectroradiometer.

I. INTRODUCTION

Remote sensing refers to the activities of  recording/observing/perceiving (sensing) objects or events at  far away (remote) places. Remote sensing is a sub-field of  geography. In modern usage, the term generally refers to the use of aerial sensor technologies to detect and classify objects on Earth (both on the surface, and in the atmosphere and oceans) by means of propagated signals (e.g. electromagnetic radiation) [1]. The electromagnetic radiation is normally used as an information carrier in remote sensing. The reflection of that energy by earth surface materials is then measured to produce an image of the area sensed. Generally, Remote sensing can be done on two types of data namely imagery and non imagery. It can be done using different kinds of remote sensing devices like ASD fieldspec Spectroradiometer. Remote sensing have wide range of applications in various fields, among which Agriculture plays important role in our day to day life as not only in india but in many countries agriculture is their primary source of income and all human beings, animals and many industries are dependent on agriculture field. agriculture plays key macroeconomic roles in the 

industrialization of developing countries by relieving saving, aggregate demand, fiscal, and foreign exchange constraints on the industrial sector [2].

 In agriculture field winter wheat is one of the highest yielding crops on the farm [3]. Different climatic factors and disease symptoms affects the plant growth and it directly results in yield of crop. Rust are among the most important 

fungal diseases of wheat worldwide [4]. There are three types of rust diseases in wheat crop: Strip Rust, Leaf Rust, Stem Rust.

Wheat rusts are caused by three related fungi [5]: 

• Stripe rust is caused by Puccinia striiformis f. sp. tritici.

• Leaf rust is caused by Puccinia triticina.

• Stem rust is caused by Puccinia graminis f. sp. tritici.

This paper reviews the study of wheat leaf rust (WLR) disease using hyperspectral analysis, different vegetation indices and spectral signatures can be used to estimate the features of diseased and healthy crop. In this review paper ASD Fieldspec4 Spectroradiometer is used for data collection of diseased wheat leaves and healthy wheat leaves. Using different vegetation indices (VIs) biophysical and biochemical properties of crop can be estimated. 

II. BASICS OF REMOTE SENSING

Hyperspectral remote sensing is used for over 100 years for analysis of various objects and their chemical as well as biological composition. But hyperspectral sensor offers an alternate and nondestructive technique for analysis of 

physical and chemical properties of material. Remote sensing of vegetation is mainly performed by obtaining the electromagnetic wave reflectance information from canopies using passive sensors. It is well known that the reflectance of 

light spectra from plants changes with plant type, water content within tissues, and other intrinsic factors [6].

The reflectance from vegetation to the electromagnetic spectrum (spectral reflectance or emission characteristics of vegetation) is determined by chemical and morphological characteristics of the surface of organs or leaves [7]. 

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

The main applications for remote sensing of vegetation are based on the following light spectra: (i) the ultraviolet region (UV), which goes from 10 to 380 nm; (ii) the visible spectra, which are composed of the blue (450–495 nm), green (495−570 nm), and red (620–750 nm) wavelength regions; and (iii) the near and mid infrared band (850–1700 nm)[9,10].

III. HYPERSPECTRAL REMOTE SENSING IN AGRICULTURE

Spectral data at the leaf and canopy scales have been utilized to improve the plant disease detection techniques from remotely sensed observations [11,12], where the visible and infrared regions are more sensitive to disease development [13]. The measured spectra can be utilized to early detection of fungus disease. Moreover, the optimized narrow bands vegetation indices were employed to discriminate various disease of wheat [14]. 

III.I Wheat Leaf Rust (WLR) Disease

The wheat rust is an important crop disease which has three types, i.e., wheat yellow rust (WYR), wheat leaf rust (WLR),and wheat stem rust [15]. 

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

WYR disease is identified by a single symptom which occurs as a narrow yellow stripes parallel to nervures on the leaf, whereas WLR disease is caused by the Puccinia triticina fungus and illustrates numerous symptoms simultaneously in various parts of an infected leaf [16]. The WLR symptoms vary from leaf to leaf but it presents a yellow color earlier, then its changes to orange and dark brown. Finally, the disease symptom ends with the dry leaf [17].

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

The effect of a disease on the pigments and structure of a plant and the change in their spectral responses enable spectroradiometry and remote sensing techniques to detect plant disease effectively [18].

Crop disease can cause significant yield loss and reduction of grain quality, which have a negative impact to food security around the world [19].

IV. EXPERIMENTAL SETUP

IV.I Data Collection

Field spec 4 spectrometer (Analytical spectral device, ASD Co. USA) shown in following figure having parameter details in Table 1. Spectrum data export in ASCII text, then it can analyze spectrum data with different software like ASD View Spec Pro. Unscramble and MATLAB/ Octave [20].

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review


Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

V. VEGETATION INDICES FOR ESTIMATION OF WLRSYMPTOMS

Spectral data at different scales including leaf, canopy and landscape-level have been widely used to improve precision [21-24]. In recent years, researchers have studied various spectral vegetation indices (SVIs) to detect different 

vegetation diseases [24-26]. Efficient use of spectral data in detection of plant disease depends on the application. The spectral regions from 400 to 700 and 700 to 1100 are mainly influenced by leaf composition of pigments, structure, and 

water content [27]. The effect of a disease on the pigments and structure of a plant and the change in their spectral responses enable spectroradiometry and remote sensing techniques to detect plant disease effectively [28]. There are 

indices derived from reflectance values at several wavelengths that are able to detect and quantify the leaf content substances such as chlorophyll, anthocyanin, and water [29,30].

By using different types of vegetation indices estimation of biochemical and biophysical properties of crops is possible. Vegetation indices that are used by many researchers have shown in following table [31].


Table 2. Different Vegetation Indices

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

VI. CONCLUSION

As Remote Sensing technology growing rapidly in technological era and hyperspectral Remote sensing has wide number of applications not only in agriculture field but also in different industries which are dependent on agricultural area. With the help of different spectral characteristics like spectral signatures, vegetation indices, reflectance spectra we can use it for discrimination of crops. It can be used to study the severity of disease in crops, estimating the grain yield of crops, analysis and growth modulation of crop. 


ACKNOWLEDGMENT 

This work is supported by Dept. of Computer Science and Information Technology under the funds for Infrastructure under science and Technology (DST-FIST) with sanction no. SR/FST/ETI- 340/2013 to Dept. of Computer Science and Information Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India. The authors would like to thank Department and University Authorities for providing the infrastructure and necessary 

support for carrying out the research. 


REFERENCES

[1] A. Chitradevi, S. Vijayalakshmi, “Random Forest for Multitemporal and Multiscale Classification of Remote Sensing Satellite Imagery”, International Journal of Computer Sciences and Engineering, Vol. 4, Issue.2, pp.59-65, 2016.

[2] D. Souza, “Growth Complementarity Between Agriculture and Industry: Evidence from a Panel of Developing Countries”, 2014.

[3] G. Boyle, “The Winter Wheat Guide”, Teagasc, pp. 21-40, 2016.

[4] S. N. Wegulo, “Rust Diseases of Wheat”, NebGuide, 2012.

[5] S. Markell, G. Milus, R. Cartwright, J. Hedge, “Rust Diseases of Wheat”, Agriculture and natural resources.

[6] L. Chang, S. Peng-Sen, and Liu Shi-Rong, “A review of plant spectral reflectance response to water physiological changes,” Chinese Journal of Plant Ecology, vol. 40, no. 1, pp. 80–91, 2016.

[7] C. Zhang and J. M. Kovacs, “The application of small unmanned aerial systems for precision agriculture: a review,” Precision Agriculture, vol. 13, no. 6, pp. 693–712, 2012.

[8] J. B Campbell, “Introduction to Remote Sensing”, Taylor and Francis, London, 1996. 

[9] H. R. Bin Abdul Rahim, M. Q. Bin Lokman, S. W. Harun, “Applied light-side coupling with optimized spiral-patterned zinc oxide nanorod coatings for multiple optical channel alcohol vapor sensing,” Journal of Nanophotonics, vol. 10, no. 3, Article ID 036009, 2016.

[10] B. A. Cruden, D. Prabhu, and R. Martinez, “Absolute radiation measurement in venus and mars entry conditions,” Journal of Spacecraft and Rockets, vol. 49, no. 6, pp. 1069–1079, 2012.

[11] S. Sankaran, A. Mishra, R. Ehsani, and C. Davis, “A review of advanced techniques for detecting plant diseases,” Comput. Electron. Agriculture, vol. 72, no. 1, pp. 1–13, 2010.

[12] C. Buschmann and E. Nagel, “In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation,” Int. J. Remote Sens, vol. 14, no. 4, pp. 711–722, 1993.

[13] N. K. Poona and R. Ismail, “Using Boruta-selected spectroscopic wavebands for the asymptomatic detection of Fusarium circinatum stress,” IEEE J. Select. Topics Appl. Earth Observations Remote Sens., vol. 7, no. 9, pp. 3764–3772, 2014.

[14] W. Huang, “New optimized spectral indices for identifying and monitoring winter wheat diseases,” IEEE J. Select. Topics Appl. Earth Observations Remote Sens., vol. 7, no. 6, pp. 2516–2524, 2014.

[15] M. D. Bolton, J. A. Kolmer, and D. F. Garvin, “Wheat leaf rust caused by Puccinia triticina,” Molecular Plant Pathology, vol. 9, no. 5, pp. 563–575, 2008.

[16] C. Robert, M.-O. Bancal, B. Ney, and C. Lannou, “Wheat leaf photosynthesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status,” New Phytologist, vol. 165, no. 1, pp. 227–241, 2005.

[17] D. Ashourloo, H. Aghighi, A. A. Matkan, M. R. Mobasheri, and A. M. Rad, “An Investigation Into Machine Learning Regression Techniques For The Leaf Rust Disease Detection Using Hyperspectral Measurement”, IEEE journal of selected topics in applied earth observations and remote sensing, vol. 9, pp. 4344 – 4351, 2016.

[18] J.C. Zhang, R.L. Pu, J.H.Wang, W.J. Huang, L.Yuan, J.H. Luo, “Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements”, Comput. Electron. Agric, pp. 13–23, 2012.

[19] R. N. Strange, P. R. Scott, “Plant Disease: A threat to global food security”, Annual reviews phytopathol, vol. 43, pp. 83-116, 2005.

[20] R. M. Misal, R. R. Deshmukh, “Application of Near-Infrared Spectrometer in Agro-Food Analysis: A Review”, International Journal of Computer Applications, Vol. 141 No.7, pp. 0975 – 8887, 2016.

[21] H.D Roelofsen, P. M. van Bodegom, L. Kooistra, , J. P.M. Witte, “Trait estimation in herbaceous plant assemblages from in situ canopy spectra” Remote Sens., Vol. 5, pp. 6323–6345, 2013.

[22] S. Delalieux, A. Auwerkerken, V.W. Verstraeten, B. Somers, R.Valcke, S.Lhermitte, J. Keulemanss, P. Coppin, “Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in Apple leaves”, Remote Sens, Vol. 1, pp. 858–874, 2009.

[23] U. Steiner, K. Bürling, E.C. Oerke, “Sensor use in plant protection”, Gesunde Pflanz, Vol. 60, pp. 131–141, 2008. 

[24] J.C. Zhang, R.L. Pu, J.H.Wang, W.J. Huang, L.Yuan, J .Wang, “Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresse”,Field Crops Res., Vol. 134, pp.165–174,2012.

[25] C.Hillnhütter, A.K. Mahlein, R.A. Sikora, E.C. Oerke, “Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet fields”, Field Crops Res., Vol. 122, pp. 70–77, 2011. 

[26] D. Moshou, C. Bravo, J. West, S. Wahlen, A. McCartney, H. Ramon, “Automatic detection of ―yellow rust‖ in wheat using reflectance measurements and neural networks”, Comput. Electron. Agric, Vol. 44, pp. 173–188, 2004.

[27] A.K. Mahlein, T. Rumpf, P. Welke, H.W. Dehne, L. Plümer, U. Steiner, E.C. Oerke, “Development of spectral indices for detecting and identifying plant diseases”, Remote Sens. Environ, Vol. 128, pp. 21–30, 2013. 

[28] J.C. Zhang, R.L. Pu, J.H.Wang, W.J. Huang, L. Yuan, J.H. Luo, “Detecting powdery mildew of winter wheat using leaf level13–23, 2012. 

[29] A.A. Gitelson, Y.J. Kaufman, R. Stark, D. Rundquist, “Novel algorithms for remote estimation of vegetation fraction”, Remote Sens. Environ, Vol.80, pp. 76–87, 2002. 

[30] J. Penuelas, F. Baret, I. Filella, “Semiempirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance”, Photosynthetica, Vol. 31, pp. 221–230, 1995. 

[31] P. V. Janse, R. R. Deshmukh, “Hyperspectal Remote Sensing for Agriculture: A Review”, International Journal of Computer Applications,Vol.172 No.7, pp. 0975 – 8887, 2017.

[32] A. R. Huete, B. K. Liu, L. Van, “A comparison of vegetation indices over a global set of TM images for EOS-MODIS”, Remote Sensing of Environment, Vol. 59, pp. 440-451, 1997. 

[33] J.W. Rouse, R.H. Haas, J.A. Schell, D.W. Deering, “Monitoring vegetation systems in the great plains with ERTS, Third ERTS symposium”, NASA SP-351, NASA Washington, DC, Vol. 1, pp. 309-317, 1973. 

[34] C.F. Jorden, “Leaf area index from quality of light on the forest floor”, Ecology, Vol. 50(4), pp. 663-666, 1969. 

[35] B. Gao, “NDWI: A normalized difference water index for remote sensing of vegetation liquid water from space”, Remote Sensing of Environment, Vol. 58, pp. 257-266, 1996. 

[36] J. Penuelas, J. Pinol, R. Ogaya, I. Lilella, “Estimation of plant water content by the reflectance water index WI (R900/ R970)”, International journal of remote sensing, Vol. 18, pp. 2869-2875, 1997. 

[37] Y. J. Kaufman, D. Tanier, “Atmospherically resistant vegetation index (ARVI) for EOS-MODIS”, IEEE Transaction on Geoscience and Remote Sensing, Vol. 30(2), pp. 261-270, 1992. 

[38] A.R. Huete, “A soil adjusted vegetation index (SAVI)”, Remote Sensing of Environment, Vol. 71, pp. 158-182, 2000. 

[39] A.A. Gitelson, Y. J. Kaufman, R. Stark, D. Rundquist, “Novel algorithm for remote estimation of vegetation fraction”, Remote Sensing of Environment, vol. 80, pp. 76-87, 2002. 

[40] J. Penuelas, F. Baret, I. Filella, “Semi empirical indices to assess carotenoids/ chlorophyll a ratio from leaf spectral reflectance”, Photosynthetica, Vol. 31, pp. 221-230, 1995. 

[41] G. A. Blackburn, “Spectral indices for estimating photosynthetic pigment concentration: A test using senescent tree leaves”, International journal of remote sensing, Vol. 19, pp. 657-675, 1998. 

[42] G. A. Blackburn, “Quantifying chlorophyll and carotenoids from leaf to canopy scale: An evaluation of some hyperspectral approaches”, Remote Sensing of Environment, Vol. 66, pp. 273-285, 1998. 

[43] M. N. Merzlyak, A. A. Gitelson, O. B. Chivkunova, Y. Ratikin, “Nondestructive optical detection of pigment changes during leaf senescent and fruit ripening”, Physiologia Plantarum, Vol. 105, pp. 135-141, 1999. 

[44] M. S. Kim, “The use of narrow spectral bands for improving remote sensing estimation of fractionally absorbed photosynthetically active radiation (fAPAR)”, Master Thesis, Department of Geography, University of Maryland, College Park, 1994. 

[45] C. S. T. Daughtry, C. L. Walthall, M. S. Kim, E. B. de Colstoun, J. E. McMurtrey, “Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance”, Remote Sensing of Environment, Vol. 74, pp. 229-239, 2000. 

[46] A. A. Gitelson, G. P. Keydan, M. N. Merzlyak, “Three band model for noninvasive estimation of chlorophyll, carotenoids and anthocyanin contents in higher plant leaves”, Geophysical Research Letters, Vol. 33, L11402, 2006. 

[47] A. A. Gitelson, M. N. Merzlyak, O. B. Chivkunova, “Optical properties and non-destructive estimation of anthocyanin content in plant leaves”, Photochemistry and Photobiology, Vol. 74(1), pp. 38-45, 2001. 

[48] J. A. Gaman, J. S. Surfus, “Assessing leaf pigment content and activity with a reflectometer”, New Phytologist, Vol. 143, pp. 105-117, 1999. 

[49] A. K. Van Den Berg, T. D. Perkins, “Non-destructive estimation of anthocyanin content in autumn auger maple leaves”, Horticultural Science, vol. 40(3), pp. 685-685, 2005. 

[50] A. A. Gitelson, Y. Zur, O. B. Chivkunova, M. N. Merzlyak, “Assessing carotenoid content in plant leaves with reflectance spectroscopy, Photochemistry and Photobiology, Vol. 75(3), pp. 272-281, 2002. 

[51] A. R. Hunt, B. N. Rock, “Detection of changes in leaf water content using near- and middle-infrared reflectance”, Remote Sensing of Environment, Vol. 30, pp. 43-54, 1989. 

[52] B. N. Rock, J. E. Vogelmann, D. L. Williams, A. F. Vogelmann, T. Hoshizaki, “Detection of forest damage”, BioScience, Vol. 36(7), pp. 439-445, 1986. 

[53] J. A. Gamon, L. Serrano, J. S. Surfus, “The photochemical reflectance index: An optical indicator of photosynthetic radiation-use efficiency across species, functional types, and nutrient level”, Oecologia, Vol. 112, pp. 492-501, 1997. 

[54] D. N. H. Horler, M. Dockray, J. Barber, “The red-edge of plant leaf reflectance”, International journal of remote sensing, Vol. 4, pp. 273-288, 1983. 




News / 相关新闻 More
2025 - 08 - 20
每年,全球有超过 70亿只雄性雏鸡在孵化后被淘汰,仅因“性别不符”。这种传统做法在动物福利、资源浪费和伦理层面引发广泛关注。有没有可能——在鸡蛋孵化前,就知道性别?美国伊利诺伊大学研究团队近日在权威期刊《Food Control》发表成果,提出了一种基于高光谱成像与机器学习的非破坏性性别识别技术,成功在孵化前对鸡蛋进行精准“性别筛选”,为蛋禽行业带来颠覆性突破。实验方法简述本研究由美国伊利诺伊大学厄本那-香槟分校团队开展,实验在校内家禽科研平台进行。研究共采集了264枚白壳鸡蛋,鸡种为 White Leghorn,母鸡年龄约29周。所有鸡蛋在清洁、编号后,于12.8°C、相对湿度78%的条件下冷藏过夜,以保证实验一致性。次日,鸡蛋在室温下静置30分钟恢复温度后,使用Resonon Pika L 型高光谱成像仪进行图像采集。系统配置如下:光谱范围:374–1015nm光谱分辨率:2...
2025 - 08 - 18
研究背景:被忽视的“冬季脉冲”释放一氧化二氮(N2O)作为一种高效温室气体,其单位质量对全球变暖的影响是二氧化碳的近300倍。特别是在寒冷草原地区,每年春季的“冻融期”会爆发剧烈的N2O“热时刻”,而这些短暂却强烈的排放事件,往往被全球温室气体模型忽略。研究目标:揭秘雪下土壤N2O的爆发机制中国科学院植物研究所的研究团队,首次结合“原位高频自动通量监测”与“区域土壤柱模拟实验”,系统揭示了加深的冬季积雪如何显著放大草地土壤N2O排放,并进一步明确了水分与微生物联动机制在这一过程中的核心作用。图1. 研究区概况实验一:原位自动监测,捕捉全年N2O变化趋势地点:内蒙古草原生态系统研究站(IMGERS)方法:在天然草地中布设雪围栏制造“深雪处理”,并使用SF-3500系列多通道土壤气体通量测量系统(华体会体育(中国)hth·官方网站),配合高精度激光光腔分析仪,实现全年不间断、每日高频率N2O通量监测。亮...
2025 - 08 - 11
在中国海沿岸的红树林中,有一种名叫桐花树 (Aegiceras corniculatum) 的植物,静静地记录着环境的蛛丝马迹。近日,广东海洋大学与中科院广州地化所、加州理工学院等单位合作,结合叶蜡正构烷烃和脂肪酸的δ2H分析及环境参数监测,首次构建了盐度-代谢调控-同位素分馏的关联模型,不仅修正了红树林同位素分馏理论模型,还为重建热带沿海古环境提供了全新视角。图1.研究区概况· 研究地点:湛江红树林国家级自然保护区植物叶片中的蜡质化合物,能“记住”它们吸收水分的氢同位素特征(δ²H),而这一特征受降水、盐度等因素影响。团队选取了湛江高桥、九洲与营仔三条河口,分别在旱季(2021年11月)与雨季(2022年6月),采集了桐花树的叶片、木质部、叶水、水体和沉积物孔隙水等样品,系统分析了不同季节和盐度梯度下的氢氧同位素变化。在本研究中,科研人员采用LI-2100 全自动真空...
2025 - 08 - 11
在应对气候变化的全球行动中,“土壤碳汇”这一关键词越来越频繁地出现在科学家们的研究中。在全球气候治理日益紧迫的今天,如何提升土壤碳汇能力,成为科学界关注的热点。近日,一项发表在国际期刊《Land Degradation & Development》的最新研究,聚焦非洲萨赫勒地区,通过实地采样与建模分析,揭示了不同放牧强度对草原土壤有机碳储量的影响机制。 图1. 研究区域和实验地点的位置。 研究背景 非洲萨赫勒地区是全球典型的半干旱草原生态系统,牧业在当地生计中占据重要地位。然而,关于放牧对土壤碳储量的具体影响,尤其是在不同强度下的机制,一直缺乏系统的实地数据。研究方法§采用多点样方布设,覆盖不同放牧压力区域§采集0–30cm深度的土壤进行碳氮分析§结合ASDLabSpec4地物光谱仪进行快速土壤属性预测§使用结构方程模型(SEM)解析变量间直...
关闭窗口】【打印
Copyright ©2018-2023 华体会体育(中国)hth·官方网站
犀牛云提供企业云服务

华体会体育(中国)hth·官方网站

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 



 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开