华体会体育(中国)hth·官方网站

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

Picarro | 免耕和适量施氮肥降低了华北平原半湿润玉米农田土壤CO2排放

日期: 2023-07-14
浏览次数: 28

随着人类社会的不断发展和人口的不断增加,人类对自然环境的影响也日益加剧。

其中,二氧化碳排放量已经成为全球气温升高的主要原因之一。人类活动加剧,使得二氧化碳排放量不断增加,导致全球气温不断升高。这对农业生产造成了巨大的影响。

Picarro | 免耕和适量施氮肥降低了华北平原半湿润玉米农田土壤CO2排放

当然,农业生产作为人类活动之一,对二氧化碳的排放也有一定影响。例如,农业生产中的化肥和农药等化学物质会导致二氧化碳排放量的变化。因此,农田管理措施也需要遵循环保理念,采取环保措施,减少对环境的污染,从而减少二氧化碳的排放。

来自中国科学院地理科学与资源研究所的研究团队在华北平原,就玉米田的耕种及管理对土壤CO2排放的影响做了相关研究。

免耕和适量施氮肥降低了华北平原半湿润玉米农田土壤CO2排放

Picarro | 免耕和适量施氮肥降低了华北平原半湿润玉米农田土壤CO2排放

CO2排放量加剧已致全球平均地表温度较工业化水平增加了1.1℃,且根据未来长期的CO2排放预测,预计将继续升高1.5℃或2℃。农业生产是最重要的CO2排放源之一,占人为CO2总排放量的23-30%,而适当的农田管理措施如免耕和施肥可大大减少CO2排放。土壤CO2排放是一个系统性问题,与土壤理化和生物过程密切相关。以前的研究大多通过关注土壤特性或微生物活性来研究耕作方式和施氮肥对土壤CO2排放的影响,很少有人系统地研究其综合影响,这可能导致无法完全理解潜在机制。

为更好地了解耕作方式和施氮肥对玉米田中微生物介导的土壤CO2排放的影响, 来自中国科学院地理科学与资源研究所的研究团队在山东禹城农田生态系统国家野外科学观测研究站(36°50′N,116°34′E),基于单作玉米田生长季(7-10月)为期四年(2018-2021年)的连续原位观测。通过测量两个耕作方式(传统耕作:CT和免耕NT)和两个施氮率(中等施氮率:MN和高施氮率:HN)共4种处理下(CTHN,NTHN,CTMN,和NTMN)土壤物理性质(土壤温度、水分和容重)、化学性质(土壤有机质、总氮、土壤微生物量碳和氮)和生物学特性(土壤木质素、、蛋白酶、脲酶活性、转化酶活性),分析微生物群落结构、高通量测序和CO2浓度(Picarro G2508气体浓度分析仪)。旨在(1)量化土壤CO2排放对农田实践的响应,(2)表征微生物群落结构,以及(3)确定农业实践影响CO2排放的主要非生物和生物因素

【结果】

Picarro | 免耕和适量施氮肥降低了华北平原半湿润玉米农田土壤CO2排放

(a)相关性图用于确定土壤特性与土壤CO2排放量和产量之间的相对程度。热图用于描述土壤特性、产量、土壤CO2排放量和主要细菌群落(b)或主要真菌群落(c)之间的相互作用

Picarro | 免耕和适量施氮肥降低了华北平原半湿润玉米农田土壤CO2排放

基于结构方程模型的土壤理化、生物学特性和真菌、细菌多样性对土壤CO2排放和玉米产量的影响

【结论】

NTMN(推荐模式)和CTHN(当地广泛使用模式)分别表现出最低和最高的土壤累积CO2排放量。研究表明,与CTHN相比,NTMN显著提高了玉米平均地上生物量(↑8.9%)和作物产量(↑8.5%),显著降低了土壤CO2排放强度(↓>43.4%),降低了真菌多样性(↓0.7%)、细菌丰富度(↓3.4%)和细菌多样性(↓0.3%)。与CT和HN相比,NT和MN抑制与C循环相关的代谢过程,并加强原核生物中的C固定途径。NTMN显著减少土壤CO2排放主要归因于真菌和细菌多样性的减少。相对于细菌,土壤真菌对本研究区土壤CO2排放的影响更大。在NTMN处理中,实现CO2减排和增产平衡的主要机制是降低土壤温度,增加土壤水分和容重及减少土壤有机质和增加微生物碳含量,通过减少土壤真菌和细菌底物和能量来源来抑制土壤转位酶和蛋白酶的活性,从而降低真菌和细菌的多样性,最终表现为土壤CO2排放减少和产量增加。总而言之,相对于广泛应用的CTHN模式,NTMN模式是一种生态友好型农田实践,可减少土壤CO2排放并增加作物产量。因此,应在玉米种植区推广NTMN处理,以实现碳中和。在长期尺度上,应进一步研究其稳定性和有效性。

请点击下方链接,阅读原文:

https://mp.weixin.qq.com/s/lO-bmVyNtDF4rTgvkNjW1g


News / 相关新闻 More
2025 - 08 - 20
每年,全球有超过 70亿只雄性雏鸡在孵化后被淘汰,仅因“性别不符”。这种传统做法在动物福利、资源浪费和伦理层面引发广泛关注。有没有可能——在鸡蛋孵化前,就知道性别?美国伊利诺伊大学研究团队近日在权威期刊《Food Control》发表成果,提出了一种基于高光谱成像与机器学习的非破坏性性别识别技术,成功在孵化前对鸡蛋进行精准“性别筛选”,为蛋禽行业带来颠覆性突破。实验方法简述本研究由美国伊利诺伊大学厄本那-香槟分校团队开展,实验在校内家禽科研平台进行。研究共采集了264枚白壳鸡蛋,鸡种为 White Leghorn,母鸡年龄约29周。所有鸡蛋在清洁、编号后,于12.8°C、相对湿度78%的条件下冷藏过夜,以保证实验一致性。次日,鸡蛋在室温下静置30分钟恢复温度后,使用Resonon Pika L 型高光谱成像仪进行图像采集。系统配置如下:光谱范围:374–1015nm光谱分辨率:2...
2025 - 08 - 18
研究背景:被忽视的“冬季脉冲”释放一氧化二氮(N2O)作为一种高效温室气体,其单位质量对全球变暖的影响是二氧化碳的近300倍。特别是在寒冷草原地区,每年春季的“冻融期”会爆发剧烈的N2O“热时刻”,而这些短暂却强烈的排放事件,往往被全球温室气体模型忽略。研究目标:揭秘雪下土壤N2O的爆发机制中国科学院植物研究所的研究团队,首次结合“原位高频自动通量监测”与“区域土壤柱模拟实验”,系统揭示了加深的冬季积雪如何显著放大草地土壤N2O排放,并进一步明确了水分与微生物联动机制在这一过程中的核心作用。图1. 研究区概况实验一:原位自动监测,捕捉全年N2O变化趋势地点:内蒙古草原生态系统研究站(IMGERS)方法:在天然草地中布设雪围栏制造“深雪处理”,并使用SF-3500系列多通道土壤气体通量测量系统(华体会体育(中国)hth·官方网站),配合高精度激光光腔分析仪,实现全年不间断、每日高频率N2O通量监测。亮...
2025 - 08 - 11
在中国海沿岸的红树林中,有一种名叫桐花树 (Aegiceras corniculatum) 的植物,静静地记录着环境的蛛丝马迹。近日,广东海洋大学与中科院广州地化所、加州理工学院等单位合作,结合叶蜡正构烷烃和脂肪酸的δ2H分析及环境参数监测,首次构建了盐度-代谢调控-同位素分馏的关联模型,不仅修正了红树林同位素分馏理论模型,还为重建热带沿海古环境提供了全新视角。图1.研究区概况· 研究地点:湛江红树林国家级自然保护区植物叶片中的蜡质化合物,能“记住”它们吸收水分的氢同位素特征(δ²H),而这一特征受降水、盐度等因素影响。团队选取了湛江高桥、九洲与营仔三条河口,分别在旱季(2021年11月)与雨季(2022年6月),采集了桐花树的叶片、木质部、叶水、水体和沉积物孔隙水等样品,系统分析了不同季节和盐度梯度下的氢氧同位素变化。在本研究中,科研人员采用LI-2100 全自动真空...
2025 - 08 - 11
在应对气候变化的全球行动中,“土壤碳汇”这一关键词越来越频繁地出现在科学家们的研究中。在全球气候治理日益紧迫的今天,如何提升土壤碳汇能力,成为科学界关注的热点。近日,一项发表在国际期刊《Land Degradation & Development》的最新研究,聚焦非洲萨赫勒地区,通过实地采样与建模分析,揭示了不同放牧强度对草原土壤有机碳储量的影响机制。 图1. 研究区域和实验地点的位置。 研究背景 非洲萨赫勒地区是全球典型的半干旱草原生态系统,牧业在当地生计中占据重要地位。然而,关于放牧对土壤碳储量的具体影响,尤其是在不同强度下的机制,一直缺乏系统的实地数据。研究方法§采用多点样方布设,覆盖不同放牧压力区域§采集0–30cm深度的土壤进行碳氮分析§结合ASDLabSpec4地物光谱仪进行快速土壤属性预测§使用结构方程模型(SEM)解析变量间直...
关闭窗口】【打印
Copyright ©2018-2023 华体会体育(中国)hth·官方网站
犀牛云提供企业云服务

华体会体育(中国)hth·官方网站

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 



 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开