华体会体育(中国)hth·官方网站

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

Resonon | 让生菜更健康,高光谱成像技术实现病害早期预警

日期: 2025-06-24
浏览次数: 20


Resonon | 让生菜更健康,高光谱成像技术实现病害早期预警

Resonon | 让生菜更健康,高光谱成像技术实现病害早期预警


在农业生产中,病害防控一直是影响作物产量和品质的重要因素。尤其是生菜这种广受欢迎的叶菜类作物,易受到霜霉病侵袭,一旦发病,损失可达90%以上。传统的病害检测往往依赖人工经验,不仅耗时费力,而且存在延误防治的风险。

最近,发表在国际期刊《Agriculture》的一项研究,为作物病害防控提供了全新思路:通过高光谱成像技术,实现生菜霜霉病的早期检测和精准评估!


01 高光谱成像:植物健康的“千里眼”


高光谱成像是一种融合了图像与光谱数据的前沿技术,能够细致捕捉到植物叶片反射光谱中的微小变化。这种变化往往在肉眼能观察到病斑之前就已经发生,为早期诊断提供了可能。

在本研究中,科研团队使用400–1000 nm波段的Resonon高光谱成像仪,拍摄了健康与感染霜霉病的生菜叶片。通过对比不同生长状态下的光谱数据,结合标准植被指数(如NDVI、SAVI等),提取了与病害发展密切相关的特征指标。

Resonon | 让生菜更健康,高光谱成像技术实现病害早期预警

图1 (a)健康生菜(b)患有霜霉病的生菜和(c)可见症状。



02 智能分析:让检测更高效


不仅如此,研究还引入了机器学习算法,如支持向量机(SVM),对海量高光谱数据进行建模与分类分析。通过特征选择优化,最终建立了准确率高、鲁棒性好的早期检测模型。

Resonon | 让生菜更健康,高光谱成像技术实现病害早期预警

图2.高光谱成像系统。



03 关键成果


SVM在病害初期识别阶段准确率达94%;

最具判别力的特征波段集中于绿光(530–580 nm)和近红外区(700–900 nm);

与传统目视检测相比,高光谱方法可提前数天发现病害发生。

Resonon | 让生菜更健康,高光谱成像技术实现病害早期预警

图3. 高光谱成像过程。

Resonon | 让生菜更健康,高光谱成像技术实现病害早期预警

图4. 第1天至第7天光谱带的VIP值。

Resonon | 让生菜更健康,高光谱成像技术实现病害早期预警

图5. Ref-DI 相关性与第 1 天至第 7 天 Ref 平均 VIP 的重叠。



04 为什么早期检测这么重要?

传统病害管理往往依赖经验和目测,当病斑可见时,病害已经扩散,防控成本高、效果差。而高光谱+智能分析技术,不仅能缩短反应时间,还能降低农药使用,实现更加环保、高效的农业生产。


05 面向未来的农业“黑科技”

随着设备小型化和算法智能化发展,高光谱成像有望从科研实验室走向田间地头,配合无人机、智能农机应用,形成“天-地-机”一体化监测体系,为精准农业、智慧农业注入强大动能。


参考文献:

Ban, S.; Tian, M.; Hu, D.; Xu, M.; Yuan, T.; Zheng, X.; Li, L.; Wei, S. Evaluation and Early Detection of Downy Mildew of Lettuce Using Hyperspectral Imagery. Agriculture 2025, 15, 444.



News / 相关新闻 More
2025 - 08 - 20
每年,全球有超过 70亿只雄性雏鸡在孵化后被淘汰,仅因“性别不符”。这种传统做法在动物福利、资源浪费和伦理层面引发广泛关注。有没有可能——在鸡蛋孵化前,就知道性别?美国伊利诺伊大学研究团队近日在权威期刊《Food Control》发表成果,提出了一种基于高光谱成像与机器学习的非破坏性性别识别技术,成功在孵化前对鸡蛋进行精准“性别筛选”,为蛋禽行业带来颠覆性突破。实验方法简述本研究由美国伊利诺伊大学厄本那-香槟分校团队开展,实验在校内家禽科研平台进行。研究共采集了264枚白壳鸡蛋,鸡种为 White Leghorn,母鸡年龄约29周。所有鸡蛋在清洁、编号后,于12.8°C、相对湿度78%的条件下冷藏过夜,以保证实验一致性。次日,鸡蛋在室温下静置30分钟恢复温度后,使用Resonon Pika L 型高光谱成像仪进行图像采集。系统配置如下:光谱范围:374–1015nm光谱分辨率:2...
2025 - 08 - 18
研究背景:被忽视的“冬季脉冲”释放一氧化二氮(N2O)作为一种高效温室气体,其单位质量对全球变暖的影响是二氧化碳的近300倍。特别是在寒冷草原地区,每年春季的“冻融期”会爆发剧烈的N2O“热时刻”,而这些短暂却强烈的排放事件,往往被全球温室气体模型忽略。研究目标:揭秘雪下土壤N2O的爆发机制中国科学院植物研究所的研究团队,首次结合“原位高频自动通量监测”与“区域土壤柱模拟实验”,系统揭示了加深的冬季积雪如何显著放大草地土壤N2O排放,并进一步明确了水分与微生物联动机制在这一过程中的核心作用。图1. 研究区概况实验一:原位自动监测,捕捉全年N2O变化趋势地点:内蒙古草原生态系统研究站(IMGERS)方法:在天然草地中布设雪围栏制造“深雪处理”,并使用SF-3500系列多通道土壤气体通量测量系统(华体会体育(中国)hth·官方网站),配合高精度激光光腔分析仪,实现全年不间断、每日高频率N2O通量监测。亮...
2025 - 08 - 11
在中国海沿岸的红树林中,有一种名叫桐花树 (Aegiceras corniculatum) 的植物,静静地记录着环境的蛛丝马迹。近日,广东海洋大学与中科院广州地化所、加州理工学院等单位合作,结合叶蜡正构烷烃和脂肪酸的δ2H分析及环境参数监测,首次构建了盐度-代谢调控-同位素分馏的关联模型,不仅修正了红树林同位素分馏理论模型,还为重建热带沿海古环境提供了全新视角。图1.研究区概况· 研究地点:湛江红树林国家级自然保护区植物叶片中的蜡质化合物,能“记住”它们吸收水分的氢同位素特征(δ²H),而这一特征受降水、盐度等因素影响。团队选取了湛江高桥、九洲与营仔三条河口,分别在旱季(2021年11月)与雨季(2022年6月),采集了桐花树的叶片、木质部、叶水、水体和沉积物孔隙水等样品,系统分析了不同季节和盐度梯度下的氢氧同位素变化。在本研究中,科研人员采用LI-2100 全自动真空...
2025 - 08 - 11
在应对气候变化的全球行动中,“土壤碳汇”这一关键词越来越频繁地出现在科学家们的研究中。在全球气候治理日益紧迫的今天,如何提升土壤碳汇能力,成为科学界关注的热点。近日,一项发表在国际期刊《Land Degradation & Development》的最新研究,聚焦非洲萨赫勒地区,通过实地采样与建模分析,揭示了不同放牧强度对草原土壤有机碳储量的影响机制。 图1. 研究区域和实验地点的位置。 研究背景 非洲萨赫勒地区是全球典型的半干旱草原生态系统,牧业在当地生计中占据重要地位。然而,关于放牧对土壤碳储量的具体影响,尤其是在不同强度下的机制,一直缺乏系统的实地数据。研究方法§采用多点样方布设,覆盖不同放牧压力区域§采集0–30cm深度的土壤进行碳氮分析§结合ASDLabSpec4地物光谱仪进行快速土壤属性预测§使用结构方程模型(SEM)解析变量间直...
关闭窗口】【打印
Copyright ©2018-2023 华体会体育(中国)hth·官方网站
犀牛云提供企业云服务

华体会体育(中国)hth·官方网站

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 



 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开