华体会体育(中国)hth·官方网站

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

Resonon | 使用高光谱成像仪和机器学习对新鲜和冻融牛肉进行分类

日期: 2024-02-21
浏览次数: 43

肉类富含丰富的蛋白质和营养物质,不仅能够满足我们的味蕾,还能够提供我们身体所需的能量和营养。

随着肉类需求的增加,大规模的肉类生产和运输过程中,肉类的速冻可以一定程度保持食物的新鲜度和口感。然而,关于速冻解冻的肉类,和新鲜肉类的混淆,让人难以分辨。

首尔大学的研究人员利用高光谱成像技术,做了相关的研究。

使用高光谱成像仪和机器学习对新鲜和冻融牛肉进行分类
Resonon | 使用高光谱成像仪和机器学习对新鲜和冻融牛肉进行分类

由于对安全、可食用肉类的需求的不断增加,冷冻储存技术得到了不断改进。然而目前存在解冻肉在处理和销售过程中被进行了错误的标记,宣称为新鲜肉类,这可能导致消费者受到误导或产生安全隐患。在这项研究中,使用高光谱图像数据构建了一个机器学习(ML)模型,用于区分新鲜冷藏、长期冷藏和解冻的牛肉样本。通过四种预处理方法,共准备了五个数据集来构建ML模型。使用PLS-DA和SVM技术构建了模型,其中应用散点校正和RBF核函数的SVM模型性能最佳。结果表明,利用高光谱图像数据立方体,可以构建区分新鲜肉类和非新鲜肉类的预测模型,这可以成为肉类储存状态常规分析的快速、非侵入性方法。

Resonon | 使用高光谱成像仪和机器学习对新鲜和冻融牛肉进行分类

安装在暗室中的高光谱数据采集系统的配置示意图

基于此,来自首尔大学的研究人员使用Resonon Pika L 高光谱成像仪,在近红外光谱的400-1000 nm波段内获取高光谱图像数据立方体,进行了相关研究。在本研究中,图像采集系统安装在暗室中,以确保完全消除外部光并能够采集高光谱图像。

将九个样本同时放置在哑光黑色板上,通过移动相机获取高光谱图像数据立方体。所有样品均经过光学稳定处理,在采集高光谱数据之前将它们置于实验环境中 20 分钟,消除由肌红蛋白/氧肌红蛋白含量差异引起的巧合差异。随后,通过分离红色肉部分,从高光谱数据立方体中提取了(ROI)的光谱,确保了只有红色部分肉的光谱被提取用于分析。这个过程产生了高质量的数据集,适用于后续的分析和解释。使用四种预处理技术(MSC、SNV转换、一阶Savitzky–Golay滤波和最小-最大归一化)对提取的光谱进行模型开发。

Resonon | 使用高光谱成像仪和机器学习对新鲜和冻融牛肉进行分类

本研究获取的高光谱数据立方体中的光谱图像。(a–c) 分别为“新鲜”、“受损”和“冷冻”样品的 630–650 nm 平均图像;(d-f)分别为“新鲜”、“受损”和“冷冻”样品的 540-560 nm 平均图像。
Resonon | 使用高光谱成像仪和机器学习对新鲜和冻融牛肉进行分类

用于构建肉样本分类模型的高光谱数据立方体中的光谱。(a) 实验数据的完整光谱;(b) 每个实验组的平均光谱(实线)以及加减标准差后的光谱(虚线)。

研究结论

这篇文章研究了使用NIR高光谱成像仪,对牛肉进行分类,区分其“新鲜”、“受损”和“冷冻”状态。通过将韩国产牛肉样品划分为新鲜冷藏、长期冷藏和解冻状态,共获得了九个高光谱图像数据立方体,并通过滴水损失测试定量分析了牛肉样品的状况。本研究共收集了4950个光谱图像,将其80%用作训练集,20%用作测试集。

在构建机器学习模型时,使用了四种预处理方法,包括MSC和SNV用于校正,Savitzky-Golay 1st滤波器用于平滑,Min-Max用于归一化,以及原始数据,共准备了五个数据集。采用PLS-DA和SVM技术构建模型,其中SVM模型使用了四个核函数。评估模型性能时,准确性是主要指标,同时对“新鲜”类别的F1分数进行了估计,以独立验证生鲜肉分类的性能。测试集的准确率在几乎所有模型中都超过90%,主要错误是由于未能正确区分“受损”和“冻结”类别。具有散点校正和RBF核函数的SVM模型表现最佳,其准确度达到96.57%,“新鲜”类别的F1分数为100%。研究结果表明,通过纯化高光谱图像数据立方体筛选的光谱可以构建一个预测模型,用于区分新鲜肉和非新鲜肉。这些模型在未来的实际肉类采购场所中具有可行性。


News / 相关新闻 More
2025 - 08 - 20
每年,全球有超过 70亿只雄性雏鸡在孵化后被淘汰,仅因“性别不符”。这种传统做法在动物福利、资源浪费和伦理层面引发广泛关注。有没有可能——在鸡蛋孵化前,就知道性别?美国伊利诺伊大学研究团队近日在权威期刊《Food Control》发表成果,提出了一种基于高光谱成像与机器学习的非破坏性性别识别技术,成功在孵化前对鸡蛋进行精准“性别筛选”,为蛋禽行业带来颠覆性突破。实验方法简述本研究由美国伊利诺伊大学厄本那-香槟分校团队开展,实验在校内家禽科研平台进行。研究共采集了264枚白壳鸡蛋,鸡种为 White Leghorn,母鸡年龄约29周。所有鸡蛋在清洁、编号后,于12.8°C、相对湿度78%的条件下冷藏过夜,以保证实验一致性。次日,鸡蛋在室温下静置30分钟恢复温度后,使用Resonon Pika L 型高光谱成像仪进行图像采集。系统配置如下:光谱范围:374–1015nm光谱分辨率:2...
2025 - 08 - 18
研究背景:被忽视的“冬季脉冲”释放一氧化二氮(N2O)作为一种高效温室气体,其单位质量对全球变暖的影响是二氧化碳的近300倍。特别是在寒冷草原地区,每年春季的“冻融期”会爆发剧烈的N2O“热时刻”,而这些短暂却强烈的排放事件,往往被全球温室气体模型忽略。研究目标:揭秘雪下土壤N2O的爆发机制中国科学院植物研究所的研究团队,首次结合“原位高频自动通量监测”与“区域土壤柱模拟实验”,系统揭示了加深的冬季积雪如何显著放大草地土壤N2O排放,并进一步明确了水分与微生物联动机制在这一过程中的核心作用。图1. 研究区概况实验一:原位自动监测,捕捉全年N2O变化趋势地点:内蒙古草原生态系统研究站(IMGERS)方法:在天然草地中布设雪围栏制造“深雪处理”,并使用SF-3500系列多通道土壤气体通量测量系统(华体会体育(中国)hth·官方网站),配合高精度激光光腔分析仪,实现全年不间断、每日高频率N2O通量监测。亮...
2025 - 08 - 11
在中国海沿岸的红树林中,有一种名叫桐花树 (Aegiceras corniculatum) 的植物,静静地记录着环境的蛛丝马迹。近日,广东海洋大学与中科院广州地化所、加州理工学院等单位合作,结合叶蜡正构烷烃和脂肪酸的δ2H分析及环境参数监测,首次构建了盐度-代谢调控-同位素分馏的关联模型,不仅修正了红树林同位素分馏理论模型,还为重建热带沿海古环境提供了全新视角。图1.研究区概况· 研究地点:湛江红树林国家级自然保护区植物叶片中的蜡质化合物,能“记住”它们吸收水分的氢同位素特征(δ²H),而这一特征受降水、盐度等因素影响。团队选取了湛江高桥、九洲与营仔三条河口,分别在旱季(2021年11月)与雨季(2022年6月),采集了桐花树的叶片、木质部、叶水、水体和沉积物孔隙水等样品,系统分析了不同季节和盐度梯度下的氢氧同位素变化。在本研究中,科研人员采用LI-2100 全自动真空...
2025 - 08 - 11
在应对气候变化的全球行动中,“土壤碳汇”这一关键词越来越频繁地出现在科学家们的研究中。在全球气候治理日益紧迫的今天,如何提升土壤碳汇能力,成为科学界关注的热点。近日,一项发表在国际期刊《Land Degradation & Development》的最新研究,聚焦非洲萨赫勒地区,通过实地采样与建模分析,揭示了不同放牧强度对草原土壤有机碳储量的影响机制。 图1. 研究区域和实验地点的位置。 研究背景 非洲萨赫勒地区是全球典型的半干旱草原生态系统,牧业在当地生计中占据重要地位。然而,关于放牧对土壤碳储量的具体影响,尤其是在不同强度下的机制,一直缺乏系统的实地数据。研究方法§采用多点样方布设,覆盖不同放牧压力区域§采集0–30cm深度的土壤进行碳氮分析§结合ASDLabSpec4地物光谱仪进行快速土壤属性预测§使用结构方程模型(SEM)解析变量间直...
关闭窗口】【打印
Copyright ©2018-2023 华体会体育(中国)hth·官方网站
犀牛云提供企业云服务

华体会体育(中国)hth·官方网站

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 



 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开