华体会体育(中国)hth·官方网站

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

华北和东北地区土地利用和气候变化对土壤有机碳的影响

日期: 2020-05-15
浏览次数: 102


华北和东北地区土地利用和气候变化对土壤有机碳的影响

华北和东北地区土地利用和气候变化对土壤有机碳的影响

土壤有机碳(SOC)源和汇之间的平衡会影响温室气体以及全球气候SOC储量的微小变化会影响碳循环,并可能显著增加或降低大气中的碳浓度。土壤碳的变化受气候和土地利用的影响,并且在不同土壤中也会发生变化。为了更好地理解土壤有机碳的动力学及其驱动因子,作者收集了华北和东北地区1980年代和2000年代的数据,其中2000年代的样品利用ASD Fieldspec ProFR vis–NIR光谱仪进行了漫反射光谱的测定用于土壤碳的预测,并对各个时期土壤有机碳的空间变化进行了数字土壤制图。在1980年代,在30公里的方格中采集了585个土壤样品,并在2003年和2004年对该区域进行了重新采样(1062个样品)。该地区土地利用类型主要是农田,森林和草地。土地利用,地形因素,植被指数,可见近红外光谱和气候因素作为预测因子,使用随机森林预测土壤有机碳浓度及其时间变化。1985年平均土壤有机碳浓度为10.0 g kg-1,而2004年为12.5 g kg-1。在这两个时期中,土壤有机碳变化相似且从南到北增加。据估计土壤有机碳储量在1985年为1.68 Pg,在2004年为1.66 Pg,但是不同土地利用下土壤有机碳变化是不同的。在过去的20年中,平均气温升高,大面积森林和草原转化为农田。农田土壤有机碳增加了0.094 Pg+9%),而森林和草地土壤有机碳分别损失了0.089 Pg−25%)和0.037 Pg−25%)。结论是,土地利用是该地区土壤有机碳变化的主要驱动力,而气候变化在不同地区的贡献则不同。在土地利用的转换下,土壤有机碳损失显著,而农田具有土壤有机碳封存的巨大潜力。


1 结果
1.1 土壤有机碳浓度
2004年样品的总SOC平均浓度为12.5 g kg-1,略高于1985年的SOC浓度(10.0 g kg-1)(2)。在1985年,各土地利用类型表现为农田8.3 g kg-1)<裸地10.0 g kg-1)<草地15.1 g kg-1)<沼泽16.0 g kg-1)<森林17.1 g kg-1)。在2004年表现为裸地11.1 g kg-1)<农田12.2g kg-1)<森林12.7g kg-1)<草地13.3g kg-1)<沼泽20.8 g kg-1)。随着时间的变化,农田,沼泽和裸地土壤的SOC增加了,而森林和草地降低了。1985年的土壤由于较高的标准偏差而显示出比2004年更高的变化(3)。

华北和东北地区土地利用和气候变化对土壤有机碳的影响

华北和东北地区土地利用和气候变化对土壤有机碳的影响

1.2 土壤有机碳浓度空间模型
4总结了预测模型的校准和独立验证,其中1985年样品的校准LCCC0.910.90–0.92),2004年为0.971985年独立验证LCCC0.650.39-0.902004年为0.840.77-0.90)。在校准和验证水平,1985年的RMSEs均高于2004年。由于样品密度较高,LCCCRMSE较低,因此2004年的模型比1985年的模型更稳定。
2显示了环境协变量在1985年和2004年预测模型中的重要性。在这两个时期一些协变量重要性相似,例如坡度,TWIMBI,温度,降水和土地利用。植被和气候因素是重要的预测指标,尤其是温度,降水,NDVIVNDVI。坡向,曲率和MBI2004SOC预测的贡献不大,且坡向是两个时期中最不重要的因素。2004年土壤样品光谱的PCA在预测模型中表现出很高的重要性。从PC1PC3重要性依次降低。
华北和东北地区土地利用和气候变化对土壤有机碳的影响

1.3 土壤碳的空间变化
3预测了1985年和20040-20 cm表土中SOC浓度。1985年研究区的SOC浓度从南到北增加。在南部,SOC浓度大部分在8g kg-1以下。中部海拔较高,其SOC浓度高于南部。在北部,SOC浓度随纬度显著增加。两个时期SOC的空间分布是相似的。在南半部,SOC浓度在810 g C kg-1之间,高于1985年。在北部,SOC浓度随纬度增加。
由于样品数量和地点的不同,两个时期的不确定性也有所不同(4)。北部地区预测不确定性最低。1985SOC预测的高度不确定性发生在海拔较高的中部和南部边缘。2004年的高度不确定性发生在样品密度较低的中北部地区。

华北和东北地区土地利用和气候变化对土壤有机碳的影响

华北和东北地区土地利用和气候变化对土壤有机碳的影响

1.4 土壤有机碳的变化
1985年至2004年之间,除农田外,所有土地利用的平均SOC浓度均下降。农是研究区最大的土地利用类型,其SOC浓度增加了0.5 g kg-14)。在森林土壤中,SOC减少量最大,为8.8 g kg-1-38%)。草地上的SOC浓度降低了21%。
研究发现,SOC浓度发生了显著变化,并且在初始浓度较高的地区,SOC的降低幅度更大。SOC的降低主要发生在研究区域的北部(中国东北)。减少量超过6 g kg-1 相反,初始SOC相对较低的南部地区(华北地区)SOC有所提高。
1985年和2004年土壤有机碳总储存量分别为1.68 Pg1.66 Pg。在不同的土地利用类型中,农田含有最多的有机碳,而森林和草地的有机碳含量远少于农田。二十年来森林土壤SOC损失了约25%(5),但农田土壤有机碳却增加了9%。草地土壤有机碳以25%速率增加了0.013 Pg

华北和东北地区土地利用和气候变化对土壤有机碳的影响

华北和东北地区土地利用和气候变化对土壤有机碳的影响

1.5 土地利用和气候变化对土壤有机碳变化的影响

在华北和东北地区,土地利用对SOC变化的贡献超过温度和降水变化(5)。在整个地区,对SOC变化的贡献中土地利用占38%,温度变化约占9%,而降水变化仅占5%。东北地区(42%)比华北地区(33%)的土地利用占比更大。整个研究区域,特别是东北和华北地区,温度变化对SOC均无显著影响。华北地区降水变化对SOC动态的影响很小(17%),而东北地区几乎没有影响。温度对东北地区的SOC变化没有显著影响,而华北地区占20%。华北地区气候变化对SOC变化的总贡献达到了35%,而土地利用为33%,但在总变化中共有19%的相互作用。
华北和东北地区土地利用和气候变化对土壤有机碳的影响
2 结论
研究估计了1985年至2004年之间0–20 cm表层土壤有机碳浓度和储存量的变化。数字土壤制图方法用随机森林模型中的环境协变量预测了两个时期SOC的空间变化。结果为:
(1) 随机森林可以在大尺度上有效地预测SOC空间变化。在这两个时期中,SOC浓度具有相似的趋势,东北地区的SOC较低,华北平原的SOC较高。华北地区土壤碳增加,而大多数东北地区则减少。
(2) SOC的总体储存量稳定。农田土壤中的碳储量增加0.094 Pg,增长率为9%。森林和草原土壤中发生显著的碳损失,均为-25%
(3) 在中国华北和东北地区,土地利用变化是SOC变化的主要驱动因子。与土地利用变化相比,气候变化对SOC变化的贡献相似,而东北地区的贡献较小。


Land use and climate change effects on soil organic carbon in North and Northeast China.pdf


News / 相关新闻 More
2025 - 08 - 20
每年,全球有超过 70亿只雄性雏鸡在孵化后被淘汰,仅因“性别不符”。这种传统做法在动物福利、资源浪费和伦理层面引发广泛关注。有没有可能——在鸡蛋孵化前,就知道性别?美国伊利诺伊大学研究团队近日在权威期刊《Food Control》发表成果,提出了一种基于高光谱成像与机器学习的非破坏性性别识别技术,成功在孵化前对鸡蛋进行精准“性别筛选”,为蛋禽行业带来颠覆性突破。实验方法简述本研究由美国伊利诺伊大学厄本那-香槟分校团队开展,实验在校内家禽科研平台进行。研究共采集了264枚白壳鸡蛋,鸡种为 White Leghorn,母鸡年龄约29周。所有鸡蛋在清洁、编号后,于12.8°C、相对湿度78%的条件下冷藏过夜,以保证实验一致性。次日,鸡蛋在室温下静置30分钟恢复温度后,使用Resonon Pika L 型高光谱成像仪进行图像采集。系统配置如下:光谱范围:374–1015nm光谱分辨率:2...
2025 - 08 - 18
研究背景:被忽视的“冬季脉冲”释放一氧化二氮(N2O)作为一种高效温室气体,其单位质量对全球变暖的影响是二氧化碳的近300倍。特别是在寒冷草原地区,每年春季的“冻融期”会爆发剧烈的N2O“热时刻”,而这些短暂却强烈的排放事件,往往被全球温室气体模型忽略。研究目标:揭秘雪下土壤N2O的爆发机制中国科学院植物研究所的研究团队,首次结合“原位高频自动通量监测”与“区域土壤柱模拟实验”,系统揭示了加深的冬季积雪如何显著放大草地土壤N2O排放,并进一步明确了水分与微生物联动机制在这一过程中的核心作用。图1. 研究区概况实验一:原位自动监测,捕捉全年N2O变化趋势地点:内蒙古草原生态系统研究站(IMGERS)方法:在天然草地中布设雪围栏制造“深雪处理”,并使用SF-3500系列多通道土壤气体通量测量系统(华体会体育(中国)hth·官方网站),配合高精度激光光腔分析仪,实现全年不间断、每日高频率N2O通量监测。亮...
2025 - 08 - 11
在中国海沿岸的红树林中,有一种名叫桐花树 (Aegiceras corniculatum) 的植物,静静地记录着环境的蛛丝马迹。近日,广东海洋大学与中科院广州地化所、加州理工学院等单位合作,结合叶蜡正构烷烃和脂肪酸的δ2H分析及环境参数监测,首次构建了盐度-代谢调控-同位素分馏的关联模型,不仅修正了红树林同位素分馏理论模型,还为重建热带沿海古环境提供了全新视角。图1.研究区概况· 研究地点:湛江红树林国家级自然保护区植物叶片中的蜡质化合物,能“记住”它们吸收水分的氢同位素特征(δ²H),而这一特征受降水、盐度等因素影响。团队选取了湛江高桥、九洲与营仔三条河口,分别在旱季(2021年11月)与雨季(2022年6月),采集了桐花树的叶片、木质部、叶水、水体和沉积物孔隙水等样品,系统分析了不同季节和盐度梯度下的氢氧同位素变化。在本研究中,科研人员采用LI-2100 全自动真空...
2025 - 08 - 11
在应对气候变化的全球行动中,“土壤碳汇”这一关键词越来越频繁地出现在科学家们的研究中。在全球气候治理日益紧迫的今天,如何提升土壤碳汇能力,成为科学界关注的热点。近日,一项发表在国际期刊《Land Degradation & Development》的最新研究,聚焦非洲萨赫勒地区,通过实地采样与建模分析,揭示了不同放牧强度对草原土壤有机碳储量的影响机制。 图1. 研究区域和实验地点的位置。 研究背景 非洲萨赫勒地区是全球典型的半干旱草原生态系统,牧业在当地生计中占据重要地位。然而,关于放牧对土壤碳储量的具体影响,尤其是在不同强度下的机制,一直缺乏系统的实地数据。研究方法§采用多点样方布设,覆盖不同放牧压力区域§采集0–30cm深度的土壤进行碳氮分析§结合ASDLabSpec4地物光谱仪进行快速土壤属性预测§使用结构方程模型(SEM)解析变量间直...
关闭窗口】【打印
Copyright ©2018-2023 华体会体育(中国)hth·官方网站
犀牛云提供企业云服务

华体会体育(中国)hth·官方网站

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 



 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开