华体会体育(中国)hth·官方网站

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

通过减少土壤物理性质对光谱的耦合作用来提高高光谱遥感在估算土壤有机质的时空可迁移性:以中国东北地区为例

日期: 2024-06-11
浏览次数: 78
通过减少土壤物理性质对光谱的耦合作用来提高高光谱遥感在估算土壤有机质的时空可迁移性:以中国东北地区为例

摘要

土壤有机质(SOM)在全球碳循环中起着非常重要的作用,而高光谱遥感已被证明是一种快速估算SOM含量的有前景方法。然而,由于忽略了土壤物理性质的光谱响应,SOM预测模型的准确性和时空可迁移性较差。本研究旨在通过减少土壤物理性质对光谱的耦合作用来提高SOM预测模型的时空可迁移性。基于卫星高光谱图像和土壤物理变量,包括土壤湿度(SM)、土壤表面粗糙度(均方根高度,RMSH)和土壤容重(SBW),建立了基于信息解混方法的土壤光谱校正模型。选取中国东北的两个重要粮食产区作为研究区域,以验证光谱校正模型和SOM含量预测模型的性能和可迁移性。结果表明,基于四阶多项式和XG-Boost算法的土壤光谱校正具有优异的准确性和泛化能力,几乎所有波段的残余预测偏差(RPD)均超过1.4。基于XG-Boost校正光谱的SOM预测精度最 高,决定系数(R2)为0.76,均方根误差(RMSE)为5.74 g/kg,RPD为1.68。迁移后模型的预测精度、R2值、RMSE和RPD分别为0.72、6.71 g/kg和1.53。与模型直接迁移预测相比,采用基于四阶多项式和XG-Boost的土壤光谱校正模型,SOM预测结果的RMSE分别降低了57.90%和60.27%。 这种性能比较凸显了在区域尺度 SOM 预测中考虑土壤物理特性的优势。

通过减少土壤物理性质对光谱的耦合作用来提高高光谱遥感在估算土壤有机质的时空可迁移性:以中国东北地区为例


Figure 1. Framework of the proposed SOM estimation model.

研究区域

试验点1位于中国东北黑龙江省黑土耕地保护区,如图2所示,面积为1095 km2。该地区属温带大陆性季风气候,年降水量为450–650 mm,降水主要集中在6–9月,占全年降水量的80%。研究区地势南高北低,西高东低,大部分地区为堆积平原。该研究区是全球仅有的四个黑土区之一,耕层深厚,土壤肥沃,含腐殖质的土层厚度为25–80 cm,适合种植玉米、大豆等作物。

通过减少土壤物理性质对光谱的耦合作用来提高高光谱遥感在估算土壤有机质的时空可迁移性:以中国东北地区为例

图 2. 研究区域概览。(a)研究区域的地理位置;(b、c)分别为站点 1 和站点 2 的土壤采样点;(d、e)“裸土期”的土壤表面。

试验点2 位于中国吉林省黑土耕地保护区,如图 2 所示,面积为 713 km2。站点地势平坦,海拔在 189 至 237 m 之间。该区域为东部湿润山区与西部半干旱平原区的过渡地带。研究区属温带大陆性半湿润季风气候,年平均气温 4.6 ℃,年降水量 600—700 mm。该区域河流水系丰富,农业水资源相对丰富,地表土壤空间异质性强。该区域土壤主要为黑土,腐殖质层厚度为 0.6—1.0 m。试验点2的土壤类型、地表特征等环境因素与试验点1有明显差异,可以验证本研究中SOM含量预测模型的时空可迁移性。

2022 年 10 月 29 日至 30 日,共从试验点 1 采集了 104 个表层土壤样品(图 2b)。2023 年 4 月 14 日至 15 日,从试验点 2 采集了 40 个表层土壤样品(图 2c),用于测试模型的时空可迁移性。

通过减少土壤物理性质对光谱的耦合作用来提高高光谱遥感在估算土壤有机质的时空可迁移性:以中国东北地区为例

图3. 样区内土壤样品采集与参数测量示意图。(a)象限采样示意图;(b)土壤表面点云数据测量。

研究过程

样品运回实验室后,通过称重、烘干等方法获得每个象限9个子样本的SM和SBW,并计算子样本的平均值。然后,将9个子样本混合成复合样本,在实验室内使用(ASD FieldSpec 4地物光谱仪)进行光谱测量(取十次测量的平均值)和使用重铬酸钾加热法测定SOM含量。为保证每个样品的SBW相同,将土壤样品装入一次性培养皿中进行光谱测量。对每个测量点的土壤表面点云数据进行拼接、裁剪和滤波。利用处理后的点云数据建立三维相对坐标系(图3b),提取所有点云数据的Z坐标,计算该象限的RMSH。

资源一号02D(ZY1-02D)高光谱图像数据来自中国科学院空天信息创新研究院,图像生成时间与土壤采样时间同步,所有图像的云量均小于1%。本研究选取450~1290nm、1408~1828nm和1963~2460nm波段作为光谱波段。

为了验证ZY1-02D高光谱图像的可靠性,将土壤像素光谱与土壤地面光谱进行了比较(图4)。尽管土壤像素光谱的形状与土壤地面光谱相似,但在可见光-近红外(VNIR)波段范围内存在一些噪声和平滑度较低的情况。此外,土壤像素的光谱反射率略低于实验室测量的反射率。计算了像素反射率与地面反射率之间的斯皮尔曼相关系数(SCCs)和皮尔逊相关系数(PCCs)。结果表明,大多数波长范围内的PCCs低于0.5,而在480至680nm和2000至2500nm波长范围内的SCCs基本大于0.5,表明可能存在非线性关系。为了揭示影响像素光谱的因素,比较了不同物理属性梯度下土壤反射率的差异。随着SM的增加,土壤光谱反射率显著下降,尤其是在500至1300nm和1450至1700nm波长范围内(图5)。随着SBW的增加,土壤光谱反射率的下降幅度相对较小。RMSH对土壤光谱的影响最为显著,反射率随着RMSH的增加显著下降。综上所述,SM、SBW和RMSH对光谱的耦合效应是导致两组光谱数据偏差的重要原因,严重限制了成像光谱仪对土壤“纯光谱”的获取。因此,有必要在像素光谱数据中分离土壤的物理和化学信息,以提高高光谱遥感对土壤有机质(SOM)预测的准确性。

通过减少土壤物理性质对光谱的耦合作用来提高高光谱遥感在估算土壤有机质的时空可迁移性:以中国东北地区为例

图4. 成像光谱、实验室光谱及其相关系数。

通过减少土壤物理性质对光谱的耦合作用来提高高光谱遥感在估算土壤有机质的时空可迁移性:以中国东北地区为例

图5. 不同物理性质土壤的光谱特征。

通过减少土壤物理性质对光谱的耦合作用来提高高光谱遥感在估算土壤有机质的时空可迁移性:以中国东北地区为例

图6. 基于多参数估计模型的土壤物理参数与土壤像素光谱拟合的R²值。

通过减少土壤物理性质对光谱的耦合作用来提高高光谱遥感在估算土壤有机质的时空可迁移性:以中国东北地区为例

图 7. 使用试验点 1 数据建立的 XG-Boost 模型,基于 (a) 原始像素光谱、(b) 地面光谱、(c) 四阶多项式校正光谱和 (d) XG-Boost 校正光谱和站点 2 数据测量和预测的 SOM 含量的散点图。

结论

本研究利用卫星和地面高光谱数据以及土壤物理参数数据,分别基于四阶多项式和XG-Boost构建了两种土壤光谱校正模型,以缓解土壤物理性质对像素光谱的耦合效应。通过使用来自两个试验点的数据,评估了土壤光谱校正模型的性能及其对SOM预测模型精度和时空可迁移性的影响。主要结论如下:

土壤像素光谱反射率与土壤地面光谱反射率呈非线性关系。表面物理性质的差异是导致这两种光谱数据类型偏差的主要因素。RMSH对土壤像素光谱的影响最为显著,其次是SM和SBW。

四阶多项式和XG-Boost模型具有良好的土壤光谱校正精度。基于XG-Boost的土壤光谱校正模型精度更高,时空可转移性更强,因为它考虑了所有特征,持续调整树的权重,防止结果陷入局部最优。

土壤光谱校正显著缓解了土壤物理性质对土壤像素光谱的耦合效应,有效提高了SOM预测模型的准确性,更重要的是,大大增强了基于像素光谱的SOM预测模型的时空可转移性。未来,通过充分考虑更多土壤特性,可以获得更准确的SOM预测结果。本研究为预测其他区域的土壤性质参数提供了一种新的研究范式。

点击下方链接,阅读原文:

https://mp.weixin.qq.com/s/ZYmGOq5nFvFWCCkUrVmllQ



News / 相关新闻 More
2025 - 08 - 20
每年,全球有超过 70亿只雄性雏鸡在孵化后被淘汰,仅因“性别不符”。这种传统做法在动物福利、资源浪费和伦理层面引发广泛关注。有没有可能——在鸡蛋孵化前,就知道性别?美国伊利诺伊大学研究团队近日在权威期刊《Food Control》发表成果,提出了一种基于高光谱成像与机器学习的非破坏性性别识别技术,成功在孵化前对鸡蛋进行精准“性别筛选”,为蛋禽行业带来颠覆性突破。实验方法简述本研究由美国伊利诺伊大学厄本那-香槟分校团队开展,实验在校内家禽科研平台进行。研究共采集了264枚白壳鸡蛋,鸡种为 White Leghorn,母鸡年龄约29周。所有鸡蛋在清洁、编号后,于12.8°C、相对湿度78%的条件下冷藏过夜,以保证实验一致性。次日,鸡蛋在室温下静置30分钟恢复温度后,使用Resonon Pika L 型高光谱成像仪进行图像采集。系统配置如下:光谱范围:374–1015nm光谱分辨率:2...
2025 - 08 - 18
研究背景:被忽视的“冬季脉冲”释放一氧化二氮(N2O)作为一种高效温室气体,其单位质量对全球变暖的影响是二氧化碳的近300倍。特别是在寒冷草原地区,每年春季的“冻融期”会爆发剧烈的N2O“热时刻”,而这些短暂却强烈的排放事件,往往被全球温室气体模型忽略。研究目标:揭秘雪下土壤N2O的爆发机制中国科学院植物研究所的研究团队,首次结合“原位高频自动通量监测”与“区域土壤柱模拟实验”,系统揭示了加深的冬季积雪如何显著放大草地土壤N2O排放,并进一步明确了水分与微生物联动机制在这一过程中的核心作用。图1. 研究区概况实验一:原位自动监测,捕捉全年N2O变化趋势地点:内蒙古草原生态系统研究站(IMGERS)方法:在天然草地中布设雪围栏制造“深雪处理”,并使用SF-3500系列多通道土壤气体通量测量系统(华体会体育(中国)hth·官方网站),配合高精度激光光腔分析仪,实现全年不间断、每日高频率N2O通量监测。亮...
2025 - 08 - 11
在中国海沿岸的红树林中,有一种名叫桐花树 (Aegiceras corniculatum) 的植物,静静地记录着环境的蛛丝马迹。近日,广东海洋大学与中科院广州地化所、加州理工学院等单位合作,结合叶蜡正构烷烃和脂肪酸的δ2H分析及环境参数监测,首次构建了盐度-代谢调控-同位素分馏的关联模型,不仅修正了红树林同位素分馏理论模型,还为重建热带沿海古环境提供了全新视角。图1.研究区概况· 研究地点:湛江红树林国家级自然保护区植物叶片中的蜡质化合物,能“记住”它们吸收水分的氢同位素特征(δ²H),而这一特征受降水、盐度等因素影响。团队选取了湛江高桥、九洲与营仔三条河口,分别在旱季(2021年11月)与雨季(2022年6月),采集了桐花树的叶片、木质部、叶水、水体和沉积物孔隙水等样品,系统分析了不同季节和盐度梯度下的氢氧同位素变化。在本研究中,科研人员采用LI-2100 全自动真空...
2025 - 08 - 11
在应对气候变化的全球行动中,“土壤碳汇”这一关键词越来越频繁地出现在科学家们的研究中。在全球气候治理日益紧迫的今天,如何提升土壤碳汇能力,成为科学界关注的热点。近日,一项发表在国际期刊《Land Degradation & Development》的最新研究,聚焦非洲萨赫勒地区,通过实地采样与建模分析,揭示了不同放牧强度对草原土壤有机碳储量的影响机制。 图1. 研究区域和实验地点的位置。 研究背景 非洲萨赫勒地区是全球典型的半干旱草原生态系统,牧业在当地生计中占据重要地位。然而,关于放牧对土壤碳储量的具体影响,尤其是在不同强度下的机制,一直缺乏系统的实地数据。研究方法§采用多点样方布设,覆盖不同放牧压力区域§采集0–30cm深度的土壤进行碳氮分析§结合ASDLabSpec4地物光谱仪进行快速土壤属性预测§使用结构方程模型(SEM)解析变量间直...
关闭窗口】【打印
Copyright ©2018-2023 华体会体育(中国)hth·官方网站
犀牛云提供企业云服务

华体会体育(中国)hth·官方网站

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 



 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开