华体会体育(中国)hth·官方网站

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

植物影响鸟类活动空间导致的生态系统养分损耗

日期: 2017-10-19
浏览次数: 80

摘要:

    已知植物入侵和随后的群落变化会影响营养循环,但大多数此类研究侧重于富营养化效应。针对植物引起的营养减少的效应以及同时发生的机制的研究则相对较少。在这项研究中,我们发现通常作为侵入种的椰子的入侵作用通过间接的影响,中止了外来海洋入侵物种对陆地生态系统的侵入:对鸟类的影响 - 鸟类会尽量避免筑巢在椰子树种群中,因此减少了从海洋环境带来的关键营养物质输入。这些海洋物质输入的下降导致了土壤养分的减少,叶片营养质量的下降,叶片的适度性下降及食草动物的减少。这种营养耗竭的过程比植物种群入侵导致的富营养化模式更为典型。对于空间中外来能量中断对生态系统的影响的研究表明其尚未受到接受群落变化的干扰,如植物群落转变。在热带和亚热带地区的椰子植物入侵的普遍性使得这些研究特别值得注意。

植物影响鸟类活动空间导致的生态系统养分损耗

植物影响鸟类活动空间导致的生态系统养分损耗

    同样重要的是,美洲黑斑病的近况提供了一个强有力的范例,说明植物群落的变化如何可以显著影响同种异体营养的供应,从而重塑生态系统的能量流。 椰子种群转移|间接效应|海鸟|热带岛屿通过刺激自下而上的能量流动,一个独特的营养供应链塑造了大部分生态系统的动态平衡(1,2)。辅助能的这种提高可以引发接收食物网中大量的级联变化(3-5)。近期的几篇文章已经证明,在食物链顶端的外来捕食者可以通过影响这些辅助能的传递(如鸟类)引发生态系统级联效应,从而引发生态系统结构和功能的全面转变(6,7) )。然而自上而下的影响可能不是辅助能中断的唯一机制。在这里,我们证明椰子科植物的增殖通过为鸟类栖息地造成不良影响而造成相似的营养物质消耗,具有较高的效果。鉴于这种植物在热带地区的全球扩散,我们的观察有广泛的适用性。更宽泛地说,这一观察结果表明,同种异体辅助能可能受到受体系统物种特征的阻碍,使接受者体系比以前承认的辅助能运动更为积极。已经确定的是,一种物种的生物入侵通常可以通过改变营养循环(8,9)在入侵的生态系统中具有级联效应。然而,在引入植物改变营养循环的大多数病例研究中,级联效应是由于植物对土壤的输入增加(来自增加的凋落物或直接固氮)的结果)(10,11)。推测是引进物种通常从营养丰富中获益(12)。然而,最近的工作记录了一些入侵植物在低营养环境中表现良好(13)表明,需要对专门从事低营养系统的引进植物进行更多的研究。 椰子可能起源于东南亚,然后通过天然(水)和人为散布(14)从这个起点开始区域辐射。科莫斯的单一主要立场现在在世界各地的热带和亚热带周围的许多岛屿和沿海森林中是常见的(参见Cocos nuci-fera:SI文本中的帕尔米拉的历史和当前状态)。在Palmyra环礁的Nucifera优势梯度上工作,这项研究考察了Nucifera增殖对生态系统生态学的影响。我们首先考察了在Nucifera和普通天然树种之间的栖息地偏好,Pisonia grandis和Tournefortia argentea都在横断面和宽度范围内。然后,我们检查了无花果优势对土壤和叶面营养水平的影响,以及叶面营养对叶片适口性和食草动物变化的影响。最后,为了证明高的椰子丰度是低土壤养分的一个原因而不是低土壤养分的影响(因为已知棕榈能够持续存在低营养土壤),我们比较了由疏浚填充物和天然产物制成的胰岛之间的营养水平含有不同森林类型的小岛。这种比较也使我们限制了营养物质变化发生的最长时间。

阅读原文请点击:PNAS文章.pdf

 


News / 相关新闻 More
2025 - 08 - 20
每年,全球有超过 70亿只雄性雏鸡在孵化后被淘汰,仅因“性别不符”。这种传统做法在动物福利、资源浪费和伦理层面引发广泛关注。有没有可能——在鸡蛋孵化前,就知道性别?美国伊利诺伊大学研究团队近日在权威期刊《Food Control》发表成果,提出了一种基于高光谱成像与机器学习的非破坏性性别识别技术,成功在孵化前对鸡蛋进行精准“性别筛选”,为蛋禽行业带来颠覆性突破。实验方法简述本研究由美国伊利诺伊大学厄本那-香槟分校团队开展,实验在校内家禽科研平台进行。研究共采集了264枚白壳鸡蛋,鸡种为 White Leghorn,母鸡年龄约29周。所有鸡蛋在清洁、编号后,于12.8°C、相对湿度78%的条件下冷藏过夜,以保证实验一致性。次日,鸡蛋在室温下静置30分钟恢复温度后,使用Resonon Pika L 型高光谱成像仪进行图像采集。系统配置如下:光谱范围:374–1015nm光谱分辨率:2...
2025 - 08 - 18
研究背景:被忽视的“冬季脉冲”释放一氧化二氮(N2O)作为一种高效温室气体,其单位质量对全球变暖的影响是二氧化碳的近300倍。特别是在寒冷草原地区,每年春季的“冻融期”会爆发剧烈的N2O“热时刻”,而这些短暂却强烈的排放事件,往往被全球温室气体模型忽略。研究目标:揭秘雪下土壤N2O的爆发机制中国科学院植物研究所的研究团队,首次结合“原位高频自动通量监测”与“区域土壤柱模拟实验”,系统揭示了加深的冬季积雪如何显著放大草地土壤N2O排放,并进一步明确了水分与微生物联动机制在这一过程中的核心作用。图1. 研究区概况实验一:原位自动监测,捕捉全年N2O变化趋势地点:内蒙古草原生态系统研究站(IMGERS)方法:在天然草地中布设雪围栏制造“深雪处理”,并使用SF-3500系列多通道土壤气体通量测量系统(华体会体育(中国)hth·官方网站),配合高精度激光光腔分析仪,实现全年不间断、每日高频率N2O通量监测。亮...
2025 - 08 - 11
在中国海沿岸的红树林中,有一种名叫桐花树 (Aegiceras corniculatum) 的植物,静静地记录着环境的蛛丝马迹。近日,广东海洋大学与中科院广州地化所、加州理工学院等单位合作,结合叶蜡正构烷烃和脂肪酸的δ2H分析及环境参数监测,首次构建了盐度-代谢调控-同位素分馏的关联模型,不仅修正了红树林同位素分馏理论模型,还为重建热带沿海古环境提供了全新视角。图1.研究区概况· 研究地点:湛江红树林国家级自然保护区植物叶片中的蜡质化合物,能“记住”它们吸收水分的氢同位素特征(δ²H),而这一特征受降水、盐度等因素影响。团队选取了湛江高桥、九洲与营仔三条河口,分别在旱季(2021年11月)与雨季(2022年6月),采集了桐花树的叶片、木质部、叶水、水体和沉积物孔隙水等样品,系统分析了不同季节和盐度梯度下的氢氧同位素变化。在本研究中,科研人员采用LI-2100 全自动真空...
2025 - 08 - 11
在应对气候变化的全球行动中,“土壤碳汇”这一关键词越来越频繁地出现在科学家们的研究中。在全球气候治理日益紧迫的今天,如何提升土壤碳汇能力,成为科学界关注的热点。近日,一项发表在国际期刊《Land Degradation & Development》的最新研究,聚焦非洲萨赫勒地区,通过实地采样与建模分析,揭示了不同放牧强度对草原土壤有机碳储量的影响机制。 图1. 研究区域和实验地点的位置。 研究背景 非洲萨赫勒地区是全球典型的半干旱草原生态系统,牧业在当地生计中占据重要地位。然而,关于放牧对土壤碳储量的具体影响,尤其是在不同强度下的机制,一直缺乏系统的实地数据。研究方法§采用多点样方布设,覆盖不同放牧压力区域§采集0–30cm深度的土壤进行碳氮分析§结合ASDLabSpec4地物光谱仪进行快速土壤属性预测§使用结构方程模型(SEM)解析变量间直...
关闭窗口】【打印
Copyright ©2018-2023 华体会体育(中国)hth·官方网站
犀牛云提供企业云服务

华体会体育(中国)hth·官方网站

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910124070  010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 



 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开